456 research outputs found

    The approach towards equilibrium in a reversible Ising dynamics model -- an information-theoretic analysis based on an exact solution

    Get PDF
    We study the approach towards equilibrium in a dynamic Ising model, the Q2R cellular automaton, with microscopic reversibility and conserved energy for an infinite one-dimensional system. Starting from a low-entropy state with positive magnetisation, we investigate how the system approaches equilibrium characteristics given by statistical mechanics. We show that the magnetisation converges to zero exponentially. The reversibility of the dynamics implies that the entropy density of the microstates is conserved in the time evolution. Still, it appears as if equilibrium, with a higher entropy density is approached. In order to understand this process, we solve the dynamics by formally proving how the information-theoretic characteristics of the microstates develop over time. With this approach we can show that an estimate of the entropy density based on finite length statistics within microstates converges to the equilibrium entropy density. The process behind this apparent entropy increase is a dissipation of correlation information over increasing distances. It is shown that the average information-theoretic correlation length increases linearly in time, being equivalent to a corresponding increase in excess entropy.Comment: 15 pages, 2 figure

    Expressing the entropy of lattice systems as sums of conditional entropies

    Full text link
    Whether a system is to be considered complex or not depends on how one searches for correlations. We propose a general scheme for calculation of entropies in lattice systems that has high flexibility in how correlations are successively taken into account. Compared to the traditional approach for estimating the entropy density, in which successive approximations builds on step-wise extensions of blocks of symbols, we show that one can take larger steps when collecting the statistics necessary to calculate the entropy density of the system. In one dimension this means that, instead of a single sweep over the system in which states are read sequentially, one take several sweeps with larger steps so that eventually the whole lattice is covered. This means that the information in correlations is captured in a different way, and in some situations this will lead to a considerably much faster convergence of the entropy density estimate as a function of the size of the configurations used in the estimate. The formalism is exemplified with both an example of a free energy minimisation scheme for the two-dimensional Ising model, and an example of increasingly complex spatial correlations generated by the time evolution of elementary cellular automaton rule 60

    The Double Facetted Nature of Health Investments - Implications for Equilibrium and Stability in a Demand-for-Health Framework

    Get PDF
    A number of behaviours influence health in a non-monotonic way. Physical activity and alcohol consumption, for instance, may be beneficial to one’s health in moderate but detrimental in large quantities. We develop a demand-for-health framework that incorporates the feature of a physiologically optimal level. An individual may still choose a physiologically non-optimal level, because of the trade-off in his or her preferences for health versus other utility-affecting commodities. However, any deviation from the physiologically optimal level will be punished with respect to health. A set of steady-state comparative statics is derived regarding the effects on the demand for health and health-related behaviour, indicating that individuals react differently to exogenous changes, depending on the amount of the health-related behaviour they demand. We also show (a) that a steady-state equilibrium is a saddle-point and (b) that the physiologically optimal level may be a steady-state equilibrium for the individual. Our analysis suggests that general public-health policies may, to some extent, be counterproductive due to the responses induced in part of the population.

    War of attrition with implicit time cost

    Get PDF
    In the game-theoretic model war of attrition, players are subject to an explicit cost proportional to the duration of contests. We construct a model where the time cost is not explicitly given, but instead depends implicitly on the strategies of the whole population. We identify and analyse the underlying mechanisms responsible for the implicit time cost. Each player participates in a series of games, where those prepared to wait longer win with higher certainty but play less frequently. The model is characterised by the ratio of the winner's score to the loser's score, in a single game. The fitness of a player is determined by the accumulated score from the games played during a generation. We derive the stationary distribution of strategies under the replicator dynamics. When the score ratio is high, we find that the stationary distribution is unstable, with respect to both evolutionary and dynamical stability, and the dynamics converge to a limit cycle. When the ratio is low, the dynamics converge to the stationary distribution. For an intermediate interval of the ratio, the distribution is dynamically but not evolutionarily stable. Finally, the implications of our results for previous models based on the war of attrition are discussed.Comment: Accepted for publication in Journal of Theoretical Biolog

    Complexity of Two-Dimensional Patterns

    Full text link
    In dynamical systems such as cellular automata and iterated maps, it is often useful to look at a language or set of symbol sequences produced by the system. There are well-established classification schemes, such as the Chomsky hierarchy, with which we can measure the complexity of these sets of sequences, and thus the complexity of the systems which produce them. In this paper, we look at the first few levels of a hierarchy of complexity for two-or-more-dimensional patterns. We show that several definitions of ``regular language'' or ``local rule'' that are equivalent in d=1 lead to distinct classes in d >= 2. We explore the closure properties and computational complexity of these classes, including undecidability and L-, NL- and NP-completeness results. We apply these classes to cellular automata, in particular to their sets of fixed and periodic points, finite-time images, and limit sets. We show that it is undecidable whether a CA in d >= 2 has a periodic point of a given period, and that certain ``local lattice languages'' are not finite-time images or limit sets of any CA. We also show that the entropy of a d-dimensional CA's finite-time image cannot decrease faster than t^{-d} unless it maps every initial condition to a single homogeneous state.Comment: To appear in J. Stat. Phy

    Induced Technological Change in a Limited Foresight Optimization Model

    Get PDF
    The threat of global warming calls for a major transformation of the energy system the coming century. Modeling technological change is an important factor in energy systems modeling. Technological change may be treated as induced by climate policy or as exogenous. We investigate the importance of induced technological change (ITC) in GET-LFL, an iterative optimization model with limited foresight that includes learning-by-doing. Scenarios for stabilization of atmospheric CO2 concentrations at 400, 450, 500 and 550 ppm are studied. We find that the introduction of ITC reduces the total net present value of the abatement cost over this century by 3-9% compared to a case where technological learning is exogenous. Technology specific polices which force the introduction of fuel cell cars and solar PV in combination with ITC reduce the costs further by 4-7% and lead to significantly different technological solutions in different sectors, primarily in the transport sector.Energy system model, Limited foresight, Climate policy, Endougenous learning, Technological lock-in

    Bifurcation in Quantum Measurement

    Full text link
    We present a generic model of (non-destructive) quantum measurement. Being formulated within reversible quantum mechanics, the model illustrates a mechanism of a measurement process --- a transition of the measured system to an eigenstate of the measured observable. The model consists of a two-level system μ\mu interacting with a larger system AA, consisting of smaller subsystems. The interaction is modelled as a scattering process. Restricting the states of AA to product states leads to a bifurcation process: In the limit of a large system AA, the initial states of AA that are efficient in leading to a final state are divided into two separated subsets. For each of these subsets, μ\mu ends up in one of the eigenstates of the measured observable. The probabilities obtained in this branching confirm the Born rule.Comment: A revised version that includes a more general presentation of the model (in Sect. 4) and a larger revision of the Introductio

    A simple model of cognitive processing in repeated games

    Full text link
    In repeated interactions between individuals, we do not expect that exactly the same situation will occur from one time to another. Contrary to what is common in models of repeated games in the literature, most real situations may differ a lot and they are seldom completely symmetric. The purpose of this paper is to discuss a simple model of cognitive processing in the context of a repeated interaction with varying payoffs. The interaction between players is modelled by a repeated game with random observable payoffs. Cooperation is not simply associated with a certain action but needs to be understood as a phenomenon of the behaviour in the repeated game. The players are thus faced with a more complex situation, compared to the Prisoner's Dilemma that has been widely used for investigating the conditions for cooperation in evolving populations. Still, there are robust cooperating strategies that usually evolve in a population of players. In the cooperative mode, these strategies select an action that allows for maximizing the sum of the payoff of the two players in each round, regardless of the own payoff. Two such players maximise the expected total long-term payoff. If the opponent deviates from this scheme, the strategy invokes a punishment action, which aims at lowering the opponent's score for the rest of the (possibly infinitely) repeated game. The introduction of mistakes to the game actually pushes evolution towards more cooperative strategies even though the game becomes more difficult.Comment: Accepted for publication in the conference proceedings of ECCS'0

    Scattering theory of the bifurcation in quantum measurement

    Get PDF
    We model quantum measurement of a two-level system μ\mu. Previous obstacles for understanding the measurement process are removed by basing the analysis of the interaction between μ\mu and the measurement device on quantum field theory. We show how microscopic details of the measurement device can influence the transition to a final state. A statistical analysis of the ensemble of initial states reveals that those initial states that are efficient in leading to a transition to a final state, result in either of the expected eigenstates for μ\mu, with probabilities that agree with the Born rule.Comment: Change of title and minor revisions of main text and supplemental material; main text 8 pages, 2 figures; supplemental material 9 pages, 2 figure
    corecore